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Abstract 

The Lanczos algorithm is applied to derive the Cauer 
ladder network for induction heating analysis. The 
equivalent circuit obtained by the first Lanczos algorithm 
is a Cauer-I type circuit consisting of thermal inductance 
and resistance. Reapplying the Lanczos algorithm to the 
Cauer-I type circuit equation yields a Cauer-II type circuit 
consisting of a thermal capacitor and resistance, as in a 
typical thermal circuit. The temperature distribution can 
be reconstructed by superpositions of the basic functions 
corresponding to the circuit elements. 

1 Introduction 

With the technological development of power 
semiconductors and power electronics devices, high-
frequency inverters have become inexpensive, and 
induction heating devices using high-frequency methods 
have become popular. As a result, many design sites are 
incorporating induction heating analysis in the design 
stage of induction heating devices. The Finite Element 
Method (FEM) is widely used as one of the leading 
methods for induction heating analysis because of its 
versatility and high accuracy. However, when the FEM is 
applied to high-frequency induction heating where the 
skin depth of the conductor becomes extremely small, 
the elements are divided according to the small skin 
depth, resulting in a vast matrix and, thus, enormous 
computational time. As a solution to this problem, Model 
Order Reduction (MOR), which approximates a system 
described by a large matrix as a small number of 
elements, is being actively studied by research institutes 
worldwide [1]. Among them, we have focused on the CLN 
method [2]. The CLN method is an approximate method 
that replaces the Maxwell equation for eddy current fields 
with a Cauer-type equivalent circuit to speed up 
electromagnetic field analysis. We propose that the CLN 
method could be applied not only to the Maxwell equation 
but also to the heat conduction equations. Furthermore, 
we expected that combining magnetic field analysis and 
heat conduction analysis using the CLN method would 
dramatically increase the speed of induction heating 
analysis. 

This paper first describes the process of deriving a CLN 
for induction heating. Next, a CLN is derived for a model 
of heat generation density assuming induction heating, 

and the numerical examples are demonstrated to verify 
the method. 

2 Formulations 

The time constant of the magnetic field generated by an 

induction heating coil is much shorter than the time 

constant of heat conduction, and heat conduction does 

not have such a timely response. For this reason, in the 

following formulation, the CLN is derived using the time-

averaged heat generation density )Re(
2

1 *
JJ =


Q  obtained 

by time harmonic eddy current analysis, as a source of 

the induction heating analysis.  

2.1 Application of CLN to heat transfer analysis 

Assuming that the heat generation density is Q, the 
temperature T, the thermal conductivity 𝜆 , the heat 

capacity per unit volume C, the Laplace operator △, and 
the time derivative operator s, the heat conduction 
equation in continuous space is given by Equation (1). 

 −
𝜆

𝐶
(△ 𝑇) + 𝑠𝑇 =

𝑄

𝐶
 (1) 

Defining K as −
𝜆

𝐶
△ in the FEM space and N as the 

identity matrix, the temperature distribution vectors |𝑇̃⟩, 
the heat generation density vectors |𝑞̃⟩ , the heat 

conduction equation in the FEM space, Equation (1) can 

be written as Equation (2). 

 (𝐊 + 𝑠𝐍)|𝑇̃⟩ =
1

𝐶
|𝑞̃⟩ (2) 

In reference [3], it has been shown that the CLN method 

can be applied to linear partial differential equations of 

diffusion type expressed using Hermite matrices K, N 

as in Equation (2). Applying the Lanczos algorithm to 

Equation (2), K is approximated by a small-dimensional 

diagonalization matrix, N by a small triangularization 

matrix, and the circuit equations representing CLN in 

Figure 1 are generated. The CLN in which the resistor 

and inductor are repeatedly connected in series and 

parallel is called a Cauer-I type circuit. Theoretically, the 

Cauer-I type circuit continues infinitely, but for practical 

purposes, the circuit must be truncated at several 

stages.   



 

Figure 1. Cauer-I circuit for heat conduction 

The CLN method generates the temperature basis 

functions 𝑇2𝑛+1(𝑟)  corresponding to each circuit 

element simultaneously with the CLN generation. The 

temperature distribution T(r) can be reconstructed by 

summing the product of 𝑖2𝑛 and the corresponding basis 

functions 𝑇2𝑛+1(𝑟), as shown in Equation (3). 

 𝑇(𝑟) = ∑ 𝑖2𝑛𝑇2𝑛+1(𝑟)𝑛=0  (3) 

2.2 Conversion to the Cauer-II type thermal circuit 

Reapplying the Lanczos algorithm to the Cauer-I circuit 
derived in the previous section, diagonalizing the L 
matrix and triangulating the R matrix, we obtain a CLN 
with resistors and inductors swapped with each other, as 
shown in Figure 3 (b). This CLN is called a Cauer-II type 
circuit. At this time, corresponding basis functions are 
generated automatically. 

Furthermore, by performing 1/s conversion to the Cauer-
II type circuit, it is possible to derive the equivalent circuit 
composed of resistances and capacitors such as Figure. 
3 (c). This is a typical thermal circuit consisting of 
resistors in series and capacitors in parallel. 

 
 

Figure 3. Derivation process from Cauer-I  
to thermal circuit 

3 Numerical Result 

Using a cylindrical conductor shown in Figure 4 (a) with 
thermal conductivity λ = 402 W/m K, heat capacity per 
unit volume C = 3.45 MJ/km3, radius r = 3 mm, and heat 
generation density proportional to r2 as an example, we 
analyzed temperature distribution using CLN and 
compared it with FEM. The time variation of the envelope 
of the heat generation density is also shown in Figure 4 
(b). The initial temperature of the cylindrical conductor 
was set to 0 K, and the heat convection boundary 
condition was imposed on the edge of the cylindrical 
conductor. 

 𝜆
𝜕𝑇

𝜕𝑟
= −ℎ(𝑇 − 𝑇𝑒𝑥) 𝑜𝑛 𝛤 (4) 

where h is the heat convention coefficient, Tex is the 

external temperature, 𝛤 is boundary between the 

cylindrical conductor and the external domain. Here, Tex 

= 0 K, h was 100 W/m2 K.  

 

Figure 4. Time variation and spatial distribution of heat 

generation density 

T(r) obtained for a 2, 3, and 4-stage CLN is shown in 

Figure 5, along with FEM results for t =100 ms and t 

=200 ms, thus, the proposed method is verified. 

 

Figure 5. Comparison of the temperature distribution 

between CLN and FEM heat transfer analysis 
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